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ABSTRACT 

In the first section of this note, we discuss locally conformal symplectic 
manifolds, which are differentiable manifolds V z" endowed with a non- 
degenerate 2-form fl  such that  d l ) =  to ^ ~ for some closed form to. Examples 
and several geometric properties are obtained, especially for the case when 
df l  ~ 0 at every point. In the second section, we discuss the case when ~ above 
is the fundamental form of an (almost) Hermitian manifold, i.e. the case of the 
locally conformal (almost) Kfihler manifolds. Characterizations of such man- 
ifolds are given. Particularly, the locally conformal K~ihler manifolds are almost 
H e r m i t i a n  manifolds for which some canonically associated connection (called 
the Weyl connection) is almost complex. Examples of locally conformal (almost) 
K~ihler manifolds which are not globally conformal (almost) K~ihler are given. 
One such example is provided by the weU-known Hopf manifolds. 

It is well known that many particular classes of almost Hermitian manifolds 
have been intensively studied. Among them, almost Hermitian manifolds whose 
metric is globally conformal to an almost K~ihler metric have been also 
encountered (for instance, by A. Gray [6], A. Gray and L. Vanhecke [7], etc.). 
But, obviously, these manifolds have the same topological properties like the 
almost K~ihler manifolds. Therefore, it seems interesting to study almost 
Hermitian manifolds which are only locally conformal to an almost K/ihler 
manifold, and it is the aim of this note to discuss briefly such manifolds*. More 
precisely, we shall give characterizations and examples of locally conformal 
almost K/ihler manifolds and, since the main characterization follows from the 
symplectic geometry, we consider in the first section the locally conformal 

symplectic manifolds while the second section is devoted to the locally conformal 
almost K/ihler and K~ihler manifolds. 

An interesting example is provided by the Hopf manifolds (see, for instance, 

* I should like to acknowledge that my idea of considering these manifolds came during a lecture 
of Prof. L. Vanhecke in which globally conformal almost K~ihler metrics were discussed. 
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[9]), which have, as we shall see, a locally conformal K~ihler metric while it is 

known that they admit no K~ihler metric. 

1. Locally conformal symplectic manifolds 

Throughout  this note all the manifolds and tensor fields are assumed C ®. Let 

V be a 2n-dimensional connected paracompact manifold endowed  with a 

non-degenerate 2-form f~, i.e. (V, f~) is an almost symplectic manifold. We call 

(V, 1)) a locally conformal symplectic (l.c.s.) manifold if every point x E V has an 

open neighbourhood U such that 

(1.1) d(e -~ f l lu) = 0 

for some function o.: U-->R. If (1.1) is valid for U = V, (V ,~ )  is globally 
conformal symplectic (g.c.s.) and if (1.1) is valid for or = const., (V, fl) is a 

symplectic manifold. 
The characterization of the introduced manifolds is given by: 

THEOREM 1.1. (H. C. Lee [10]). Thepair ( V, f~) as above is an l.c.s, manifold 

iff there is a globally defined 1-form to on V such that 

(1.2) d f ~ = ~ o ^ ~ ,  d~o=0,  

and (V,f~) is g.c.s, iff, moreover, the closed form to is exact. 

PROOF. If (V, f~) is l.c.s., (1.1) implies df~ = do. ^ lq, i.e. on each U there is a 

closed 1-form ~ou = do. such that dO = ~Ou ^ l~. Clearly, on each U A U' we have 

then (OJu - oJu,) A f~ = 0 and, since we cannot have ~ = (oJu - ~ou,) ̂  a because l~ 

is non-degenerate,  it follows that ~ou = ~ou,. Hence, we get on V a globally 

defined 1-forrri ~o verifying (1.2). Conversely, if oJ exists, every x E V has a 

neighbourhood U where ~o is exact, i.e. ~o = do- and (1.2) implies (1.1). The last 

assertion of the theorem is obvious. 

It is worth remarking that the previous proof and characterization are valid for 

Banach manifolds too. For the finite-dimensional case, the form co is just the one 

introduced by Lee [10], who also proved that for n = 2 the first condition (1.2) is 

automatically verified; we therefore call to the Lee form. For n = 1, we clearly 

must take to = 0 and (V, f~) is always symplectic. As for finite n > 2, it is easy to 

derive that the second condition (2) follows from the first [11, 15]. Finally, a 

characterization equivalent to (1.2) in terms of the existence of some special 

connections on V is derived by R. Miron in [12, 13]. 

COROLLARY 1.2. For every l.c.s, manifold (V,~),  the universal covering 

manifold Q with the induced form ~ is a g.c.s manifold. 
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Actually, this follows from the last assertion of Theorem 1.1 in view of the 

1-connectedness of V. (Clearly, every l.c.s, structure on a 1-connected manifold 

is g.c.s.) 

Let us also remark that the last assertion of Theorem 1.1 implies other 

consequences too. For instance, for the l.c.s, manifold (V, l-l) not to be g.c.s, it is 

necessary that H'(V,  R ) ~  0, or in the compact case that the first Betti number  

b t ( V ) ~  O, which implies that the fundamental group ~'1(V) is infinite. 

Next, we shall give examples of I.c.s. manifolds which are not g.c.s, and which 

show that this class of manifolds is large enough. 

First, let M 2"-~ be a contact manifold with contact form 0, i.e. 0 A (dO) n-~ # 0 

[2]. Consider V = S ~ x M 2~-' endowed with the form f~ = 0 A to + dO, where to is 

the length element of the circle S i. Clearly, fl  is non-degenerate,  to is closed and 

not exact and (1.2) is verified. Hence, (V, f~) is an l.c.s, manifold having to as its 

Lee form and which is not g.c.s. Moreover,  if M is compact, V is also compact. 

Also, let p: V ~ M  be an arbitrary principal bundle with group S ~ over a 

(2n - 1)-dimensional manifold M. Next, let 0 be the form of a connection on this 

principal bundle and ~ = dO be the corresponding curvature form [8]. Then, if 

to ^ 0 ^ ~ - '  ~ 0, the form l~ = O ̂  to + 'It defines an l.c.s, structure on V which is 

not g.c.s. 

Then, a second type of example can be obtained as follows. Let (W 2n-:, X) be a 

symplectic manifold, whose fundamental form X is exact, i.e. X = dO for some 

global 1-form 0 on V and rank (dO)= 2 n -  2. For example, such symplectic 

manifolds are the cotangent bundles of the (n - 1)-dimensional manifolds and 

the tangent bundles of the ( n -  1)-dimensional Riemann manifolds (see, for 

instance, [1]). Next, let p: V ~ W be a trivial principal bundle with group T 2, the 

2-dimensional torus. Then, by taking two independent invariant 1-forms on T 2, 

we may induce two closed and non-exact 1-forms to and m on V and we may 

define on V the 2-form 

l'l = to A (m -- p*O)+ p'dO, 

which is obviously of rank 2n and satisfies (1.2). Hence (V,I-I) is an l.c.s. 

manifold which is not g.c.s. 

Now, returning for a little while to the general l.c.s, manifolds let us remark 

that many interesting gometric elements may be defined for them. Thus, there 

will be a canonical vector field A defined by* 

, For the values of exterior forms, products and derivatives we use the definitions of [18], also 
used in [6]. Other  po;~sible conventions are those of [1, 9]. 
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(1.3) O(X, A )  = to(X) 

for every vector field X on V, and for which easy calculations based on (1.2) and 

(1.3) give 

(1.4) t o ( A ) =  0, LAto = 0, L A O =  0, 

where LA denotes the Lie derivative. Also, there are a lot of important linear 

connections, namely the symplectic connections (VxO = 0) and the conformal 

symplectic connections (V×II = a(X)O), which were studied by many authors: 

Ph. Tondeur  [17], R. Miron [12, 13], V. Cruceanu [4], V. Oproiu [14]. 

Finally, if we introduce a Riemann metric g on the 1.c.s. manifold (V, II) we 

can obtain a second canonical vector field B defined by 

(1.5) g(X, B)  = to(X).  

The following result is also worthy of mention: 

PROPOSITION 1.3. Let (V, g, O) be a compact Riemann l.c.s, manifold. Then, by 

a global conformal transformation of O we get on V a Lc.s. structure ~ whose Lee 

form is harmonic. 

PROOF. Since V has a volume element, namely O n, it is also orientable and 

from Hodge 's  decomposition theorem we have to = Hto + dr, where Hto is a 

harmonic 1-form and f a function V---~R. Then, the proposition follows by 

taking fi = e - q l .  

An interesting particular class of l.c.s, manifolds is defined by asking dO / 0 at 

every point or equivalently to / 0 or A ~ 0 at every point. We call such manifolds 

strongly nonsymplectic (s.n.l.c.s.). If V is a compact s.n.l.c.s, manifold its 

Euler-Poincar6 characteristic x ( V ) =  0. All the previously considered examples 

of l.c.s, manifolds were s.n. 

For the remaining part of this section, (V, lI) will be a 2n-dimensional s.n.l.c.s. 

manifold and g will be an arbitrary Riemann metric on V. 

We begin by remarking that, in this case, to = 0 defines on V a foliation ~; of 

codimension one, which we call the canonical foliation of V and which is 

transversally parallelizable in the sense of L. Conlon [3]. Clearly, B defined by 

(1.5) is normal to ,~ and never vanishes. 

Next, we resume some geometric properties of the manifold by: 

THEOREM 1.4. (i) On every Riemannian s.n.Lc.s, manifold (V, g, fl) with Lee 

form to there is a uniquely determined 1-form m and a uniquely determined 2-form 
xlt such that 
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(1.6) 

where 

(1.7) nr (B)=O,  ~ ( X , B ) = O ,  t o A n r A ~ ' - ' # O ,  d ~ = t o A ( ~ + d n r ) ,  

nr(A) = 1, aY(X,A)=O, 

X being an arbitrary vector field on V. 
(ii) Conversely, if on the Riemann manifold V z" with metric g there are given: a 

closed 1-form to, a 1-form ~ and a 2-form • such that, with B given by (1.5), the 

first four relations (1.7) hold, then (1.6) defines on V a unique s.n.l.c.s, structure, 

whose associated elements are just the given ones. 

(iii) The leaves of the canonical foliation ~ of (V, g, ~) have an induced almost 

cosymplectic structure with closed 2-form. 

(iv) If  V is compact, the universal covering manifold ~" of V is diffeomorphic to 

R x f_,, where f_, is the universal covering manifold of an arbitrary leafL o f~ .  All 

the leaves of ~ are diffeomorphic. 

PROOF. (i) Let (V, g,f~) be given. Then, expressing f~ by local cobases on V 

which include to, we obtain local forms ~r, qs such that (1.6) and the first two of 

the relations (1.7) hold. Moreover, these forms are uniquely defined since, if we 

also had 

~ : t o A ~ r ' + ~ ' ,  ~ r ' ( B ) : 0 ,  ~ ' ( X , B ) : 0 ,  

it would follow that 

to ^ = * ' -  V ,  

and by evaluating these forms for the pair of arguments (X, B) one gets ~r = nr', 

= ~ ' .  Next, it is clear that this uniqueness property assures that m and • are, 

actually, globally defined forms. As for the last four of the relations (1.7), they 

follow respectively from rank I~ = 2n, from (1.2) and from the evaluation of (1.6) 

on the arguments (B, A)  and (X, A)  with the definition (1.3) of A. 

(ii) Clearly, under the hypotheses, (1.6) defines a s.n.l.c.s, structure on V and 

df~ = to A ~.  Hence to is the Lee form of the structure, and B defined by to is the 

second canonical vector field. Hence we must have f~ = to Anr' + ~ '  and just as 

for (i), it follows that ~r' = ~r, ~ '  = ~ ,  which proves the assertion of the theorem. 

(iii) Let i: L ~ V be the immersion of a generic leaf of :~ into V. Then, 

i * ~ =  ~ (L)  defines, in view of (1.7), a closed 2-form of rank 2n - 2  on L and 

i*nr = K(L) defines a 1-form on L such that K A ~ , - 1 ~  0. Hence, the anounced 
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structure actually exists and consists of the pair of forms (K(L), ~(L)).  If m is 

also a closed form the leaves have cosymplectic structures and many interesting 

properties can be derived [5]. 

(iv) The first assertion of this point follows, for instance, from the theorems of 

L. Conlon [3]. As for the last, if we factorize R ×/_~ by id. x 7rl(L) we get for V a 

covering manifold of the form R x L and L covers all the leaves of of. Since L is 

arbitrary, any two leaves of off cover each other, whence they are diffeomorphic. 

2. Locally conformal almost K~ihler manifolds 

Let V 2~ be an almost Hermitian manifold with the metric g and with the 

almost complex structure J ( j2=  _ id.). Then 

(2.1) a (X,  Y) -- g(X, JY) 

defines the fundamental 2-form of V, which is non-degenerate and gives an 

almost symplectic structure on V. The manifold V will be called locally 
(globally) conformal (almost) Kdhler (l.(g.)c.(a.)K) if l-I defines an l.(g.)c.s. 

structure on V. Equivalently, we may ask that every x ~ V has an open 

neighbourhood U such that for some or: U ~  R, g'= e-~glt, is an (almost) 

K~ihler metric on U. 

Now, the results of the previous section can be transposed to l.c.a.K. 

manifolds. From Theorem 1.1, we see that such manifolds are again character- 

ized by the conditions (1.2), where to is the Lee form. This implies the known 

topological consequences, and particularly, that the universal covering manifold 

(V, ~) of V is a g.c.a.K, manifold, i.e. V is an almost K/ihler manifold. 

We can consider again the canonical vector field A defined by (1.3) or by the 

equivalent relation 

(2.2) g (X, A ) = to (JX). 

Also, we shall use g to define the second canonical vector field B, given by (1.5), 

and since now 

it follows that 

(2.3) 

to(X) = I)(X, A)  = g(X, JA ), 

B = J A ,  A = - J B .  

The following results are noteworthy: 
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PROPOSITION 2.1. The canonical vector ]ield A is a Killing vector field on V iff it 

is an infinitesimal auwmorphism of the almost complex structure J and in this case 

one has [A, B] = O. 

PROOF. Using LAI'I = 0 given by (1.4) and the usual definition of the Lie 

derivative one gets 

(LAg)(X, Y) = g(JX, [A, JY] - J[A, Y]), 

which proves the first of the announced assertions. Next, using also L,,to = 0, one 

gets 

(L~g)(X, B) = - g(X, [A, BI) 

which vanishes if A is Killing, and this proves the last assertion. 

Obviously, of special interest are the manifolds which are l.c.K, and we shall 

give here an interesting characterization for this case. We remark first that the 

system {U, e-~glu} is a system of local metrics on V, which are conformally 

related over each intersection U N U', i.e. this is a local metric ofconformal type 

in the sense of G. Tallini [16]. Next, let V be the Levi-Civita connection of g and 

let us define 

(2.4) Vx Y = Vx Y - ½to (X) Y - ½to ( Y ) X  + ½g(X, Y )B .  

This is easily seen to be a torsionless linear connection on V which is called the 

Weyl connection of g [16]. By simple computations one gets 

(2.5) ~Txg = to(X)g 

and next, using the fact that locally to = dtr, Vx(e -~ 'g )  = 0, which shows that the 

considered local metric has the global connection (2.4) [16]. 

Now, we can prove: 

THEOREM 2.2. The almost Hermitian manifold ( V, J, g) is an l.c.K, manifold 

iff there is a closed 1-form to on V such that the Weyl connection (2.4) be almost 

complex (i.e. fT×J = 0). 

PROOF. Let V be I.c.K. and consider the Weyl connection (2.4) constructed 

with the Lee form to. Consider the following classical relation, which is valid for 

any almost Hermitian manifold [6, 9]: 

(2.6) g((VxJ) Y , Z ) =  ½[dI~(X, JY, J Z ) -  dI)(X, Y , Z ) ] + ~ g ( N ( Y , Z ) , J X ) ,  

where N is the Nijenhuis tensor of J. In our case, N = 0 and we may compute the 
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second member of (2.6) using dO --- to A l-l. As for the first member of (2.6), we 

shall use first the relation 

(2.7) (VxJ)(Y) = V x ( J Y ) -  J(VxY) ,  

which is easily seen to be valid for any linear connection on V, hence for (7 too. 

Then we shall replace Vx from (2.4). The final result of these transformations of 

formula (2.6) will be 

(2.8) g (((TxJ) Y, Z)  = 0, 

which proves the necessity of the imposed condition. 

Conversely, suppose we have (TxJ = 0. Then, since (7 is torsionless, it follows 

by a classical result [9] that the almost complex structure J is integrable. Next, 

using again (TxJ = 0, the formula (2.7) for the connection (7 and (2.5), we get 

(2.9) (7,,0 = to(X)l'/. 

Finally, from (2.9) and the known formula 

(2.10) dO(X, Y, Z)  = ~(Tx (Y, Z) ,  

where ~ denotes the cyclic sum over X, Y, Z, it follows that dO = to A t), i.e. V 

is an 1.c.K. manifold. 

It should also be remarked that for n > 2, we may not ask in advance that to be 

closed, since this property follows as was shown in Section 1. Moreover, it is 

known that for n > 1, to must be just the Lee form of I~. Hence, we can 

reformulate the previous theorem in the following manner. Let (V, J, g) be an 

almost Hermitian manifold and to be the Lee form of its fi/ndamental form 

(which is determined by J and g). Then, take the connection (2.4) with this form 

to; it is completely determined by J and g and we call it the Weyl connection of 

the almost Hermitian manifold. One has: 

THEOREM 2.2'. The almost Hermitian manifold ( V  2", J, g)(n > 2) is an l.c.K. 

manifold iff its Weyl connection is almost complex. For n = 2 one must add the 

condition dto = O. For n = 1 the manifold is always Kiihler. 

It is important that this characterization is expressed only by the tensor fields g 

and J. 

The formula (2.6) also gives another interesting result: 

PROPOSITION 2.3. The Nijenhuis tensor of any l.c.a.K, manifold satisfies the 

relation 
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(2.11) g g  (N(Y, Z), JX) = 0. 

PROOF. By the usual definition of the covariant derivative one gets 

(2.12) (V,,F0(Y, Z)  = g(Y, (Vx J ) Z ) .  

Using this relation to express the first member of (2.6) and df~ = w All to 

express the second member, and taking the cyclic sum over X, Y, Z, it remains 

just (2.11). 
Next, like for the l.c.s, manifolds, it is interesting to consider 1.c.a.K. manifolds 

which are strongly non-Kiihler (s.n.-K.) in the sense that d l q #  0 (or oJ# 0 or 

A # 0) at every point of V, in which case one can transpose the considerations 

made for s.n.l.c.s, manifolds, and, especially, to consider the canonical foliation 
~. The following theorem characterizes such manifolds: 

THEOREM 2.4. On every s.n.-K.Lc.a.K, manifold V 2", there is a unique closed 
and nowhere vanishing 1-form oJ and a unique 2-form ~ of rank 2n - 2  such 
that: 

(2.13) 

o) A ~"- '  / 0; q'(JX, JY )  = ~ (X ,  Y); // oJ(X) = o)(JX) = O, 

att(JX, X)>=O; dxlt= tO A [Xlr + d( J ~ ) ] .  

Conversely, if (~, xI,) with the above hypotheses are given on (V 2", J ) ,  there is a 
unique s.n.-K.l.c.a.K, metric g on the manifold, whose associated forms are the 
given ones. 

PROOF. Suppose V has the needed metric g. Then, by Theorem 1.4(i) we have 

(1.6) and (1.7) and by evaluating (1.6) on the arguments (JX, A) one gets 

(Jto)(X) = ~o(JX)= ~(JX, A)= f~(B, X)= to(B )~(X) ,  

whence, because clearly ~o(B)= [I ~o [[5 

1 
(2.14) nr = I - ~  Jw' o) = -]]o9]] ~ J~r. 

Now, the first and the last of the conditions (2.13) follow from (1.7) and using 

again (1.6) we have 

fl(X, Y) = ~ (o~(X)to(JY)- to( r)oJ(JX)) + qz(x, r ) ,  (2.15) 

whence the other conditions (2.13) follow immediately. 
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Conversely, suppose that the forms to and • satisfy the hypotheses of the 

theorem and define t~ by (2.14) and f~ b~¢ (1.6) or equivalently by (2.15). Then 

nr A to A ~ , - 1 ~  0 since, otherwise, because to and nr are obviously linearly 

independent, we should have ~ A ~ " - '  = 0, which, evaluated on the arguments 

(JX, JY~,.. ",JY2,-2) is equivalent to (to A ~"-I)(X, YI , "  ", Y2,-O = 0, in con- 

tradiction to (2.13). The proved relation assures that 11 is non-degenerate. 

Next, if we take g(X, Y) = I)(JX, Y), it follows from (2.15) and (2.13) that g is 

a Hermitian metric and that it defines an s.n.-K.l.c.a.K, structure on V. 

Now, to see that to,~ are the forms which the direct part of the theorem 

associates with g, consider the equations 

(2.16) * ( X , A ) = 0 ,  t o ( A ) = 0 ,  n r ( A ) = l ,  

which define a unique vector field A on V. Using (2.15) we get I~(X, A)  = to(X), 

which shows that A of (2.16) is just the canonical vector field and B = JA is the 

second canonical vector field. But, from (2.16) we get 

(2.17) ~ (X ,  B)  = 0, w-(B) = 0, 

which in view of Theorem t.4 proves our assertion. 

Clearly, for n > 2, we may no longer ask in advance that d to= 0, since this 

property automatically follows. 

We also remark that we could use now parts (iii), (iv) of Theorem 1.4 in order 

to obtain properties of the foliation ff  and of the universal covering of V, but we 

shall not consider this in detail here. 

In the final part of this note, we want to give some examples of l.c.a.K, and 

1.c.K. manifolds. 

Like in Section 1, we start again with a contact manifold, but not with an 

arbitrary one. According to Boothby and Wang [2], if (N, ~)  is a symplectic 

manifold, whose fundamental form qb defines an integral cohomology class, 

there is a principal SLbundle r r : M ~ N  and a connection 0 on this bundle, 

which gives a regular contact structure on M and is such that dO = 7r*qb. Hence, 

let us consider a (2n - 2)-dimensional almost K~ihler manifold N with the almost 

complex structure j and the metric % and whose fundamental form qb defines an 

integral cohomology class of N e.g. N could be a compact Hodge manifold. 

Next, consider the S Lprincipal bundle 7r : M ~ N and the connection 0 men- 

tioned above, i.e. which gives a contact structure on M. Also, let 7r': V ~  M be a 

trivial principal SLbundle over M, to be the 1-form defined on V by the length 

element of the fibre and 



348 I. VAISMAN Israel J. Math. 

(2.18) l) = ( l r ' *0)^  w + (¢r'o 7r)*O 

the corresponding 2-form on V which, according to Section 1, gives an s.n.l.c.s. 

structure on this manifold. We shall show that f~ is the fundamental form of an 

almost Hermitian structure on V, thereby ending the construction of the desired 

example. 

First, oJ = 0 defines the canonical foliation ,~ on V and, clearly, the tangent 

distribution of ,~ is complementary to the vertical distribution made up by the 

tangent lines of the fibres of V. Hence, if we denote this last distribution by °F 

and the first again by o ~ we have 

(2.19) TxV -- ~ • OFx(x'E V). 

Since OFt = ker~r,~(x), there is an obvious isomorphism a :  ,~x ~ im~r~(x)= 
T,,~M, which extends to vector fields and (2.19) may be written as 

(2.20) TxV = a-'(T=,<~,M)O OF~. 

Next, since 0 is a connection on ~r: M--> N, it defines horizontal spaces on M 

such that 

(2.21) T~,M = ~,, M ~ °W,, M (m ~ M),  

where ~ means horizontal and ~ means vertical on M. But it is known that we 

have again an isomorphism [3: Y(,,M ~ T,~,.~N, which also extends to vector 

fields. Hence (2.20), (2.21) together provide a decomposition 

(2.22) T~ V = ot - '  o [3 -'(T~.o,,~) N)  ~ a-'(~W,~,~) M) ~) OF~ 

which yields corresponding decompositions of the vector fields on V. 

Namely, let us denote by P the vector field on V whose trajectories are the 

fibres of 7r' and by O the vector field on M whose trajectories are the fibres of rr. 

Then every vector field X on V has a unique decomposition of the form 

(2.23) X = X, + Aa- ' (O)  + tzP, 

where X, belongs to the first term of the decomposition (2.22). 

Now, we can define an operator  J acting on X of (2.23) by the formula 

(2.24) JX = a 'o[3-'ojo[3 oa(X,)+ ~ a - ' ( O ) -  AP, 

where j is the almost complex structure of N and it is obvious that jz = _ id., i.e. 

J defines an almost complex structure on V. 

Next, if we take also the vector field Y =  Y~+A'a-~(Q)+#'P,  an easy 

computation gives in view of (2.18) 
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(2.25) I~(X, Y) = (A/z ' - / zh ' )  + qb(X,, Y,) 

and since qb is the fundamental form of the metric 7 it follows that 

(2.26) 

Hence 

(2.27) 

f~(JX, JY) = ~(X, Y). 

g(X, Y) = I~(JX, Y) = (AA'+ p.p.') + y(X, ,  Y,) 

is an almost Hermitian metric on V whose fundamental form is II and we see 

that V is an l.c.a.K, manifold. 

Moreover,  to never vanishes, hence V is s.n.-K, and if we start with a compact 

manifold N, V is compact too. 

For a first example of an l.c.K, manifold let us proceed as follows. Consider 

the complex analytic manifold V = T'cx C"- ' ,  where Tic is the complex 1- 

dimensional torus and C is the complex line. Denote  by w and respectively 

zl, . .  ., z "-~ the complex cartesian coordinates on T'c and C "-1 and define on V 

the Hermitian metric 

(2.28) ds 2= d w - ~ , ~ ' d z '  @ d f f - ~ , z  + dz '@d~' .  
1 = 1  i = l  i = 1  

The corresponding fundamental form is 

n 1 n - I  n - 1  

(2.29, f ~ = - X / - - S - l { ( d w - ~ $ ' d z ' ) ^ ( d ~ - ~ z ' d g ' ) } + ~ d z ' ^ d g  = .= 

and it follows at once that 

(2.30) dO = to ^ f~, 

where 

n - !  

(2.31) to = dw +dff, - ~, (~'dz' + z'dU), 
/ = 1  

which is obviously closed but not exact and, also, never vanishes. 

We have thus an example of an s.n.-K.l.c.K, manifold which is not g.c.K. 

However,  the constructed manifold.also admits a K~ihler metric since it is the 

product of two Kfihler manifolds. 

A more interesting example is that of the Hopfmanifolds, which are defined as 

quotients H = (C"/{0})/A~, where A~ is the cyclic group generated by the 

transformation z ~ Az (z E C"\{0}), A being any non-zero complex number with 
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[h i#  1. It is known (see, for instance, [9]) that H is diffeomorphic with 

S 1 x S 2"-1, hence it is a compact complex analytic manifold. 

Consider on C"\{0} the Hermitian metric 

dz'  @ dY.' 
(2.32) ds 2 - ~=' 

j = l  

This metric is obviously invariant by A~, hence it induces a Hermitian metric on 

H and it is clear from (2.32) that this is an 1.c.K. metric. For n > 1, the obtained 

metric cannot be g.c.K, since it is known [9] that H admits no K~ihler metric. The 

fundamental form of the metric (2.32) is 

(2.33) 
n n 

f l =  - ~ / ~ - l ( 1 / j ~ z J ~ ) ~ =  dz 'Ad~.  ', 

whence 

d l'l = to A f~, 

where the Lee form to is given by 

(2.34) w = - 

n 

(Sidz i + z~d5 j) 
j=t 

i = 1  

which is closed, not exact and never vanishes, i.e. H is also s.n.-K. 

The interest of this example consists in the already mentioned facts that H is 

compact and admits no K~ihler metric. We see thus that the topology of the l.c.K. 

manifolds may be quite different from that of the K~ihler manifolds. 

Note added in proof. A theorem related to Theorem 2.2 can be found in Gh. 

Atanasiu, C. R. Acad. Paris 278 A (1974), 501-504. 
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